

Overview of SEFSC Assessments

HMS Sharks: Atlantic sharpnose shark case example (SEDAR 34)

Enric Cortés, SEFSC Panama City Laboratory July 2014

Outline

- Species covered
- Staff and organization
- Steps in process
- Assessment history
- Data inputs and models
- Data and modeling limitations
- Characterization of uncertainty
- Management
- Documentation and other products
- Summary

Managed stocks

- All sharks managed by HMS in the USA
- 39 species managed in FMP
 - Small coastal sharks (4)
 - Large Coastal sharks (11)
 - Pelagic sharks (5; managed by ICCAT)
 - Prohibited species (19)

- Only 11 species assessed (13 stocks); of those 5 overfished and 3 undergoing overfishing
- Atlantic sharpnose shark first assessed in 2002
- Shark assessments are data-moderate in general

Current Stock Assessment Staff and Organization in SEFSC Panama City Laboratory (FL)

- 2 stock assessment analysts (SAAs)
- 1 new stock assessment analyst (co-analyst on first assessment currently)
- Other assessment support (indices of abundance; observer data)
- No support person to help with data compilation and preliminary analyses

Schematic of activities conducted for SEDAR 34 (standard; Atlantic sharpnose shark only)

Support biologist

Overview of models used in HMS shark stock assessments, 1998-present

1												
					YEAR							
STOCK	1998	2002	2004	2006	2007	2008	2009	2010	2011	2012	2013	2014
LCS complex	BSP	BSP; SS-SPM; SS-LRSG	4	BSP; SS-SPM								
Sandbar	BSP	BSP; SS-SPM; SS-LRSG; SS-ASPM; MLE	4	ASPM; BSP; SS-SPM	<i>A</i>		T T	AS'	SPM		_	,
Blacktip	BSP	BSP; SS-SPM; SS-LRSG; SS-ASPM; MLE	A							ASPM	4	,
SCS complex		BSP; SS-SPM; SS-LRSG	4	,	BSP; SS-SPM	ı						,
Atlantic sharpnose		BSP; SS-SPM; SS-LRSG	4		ASPM; BSP; SS-SPM	4					ASPM	,
Bonnethead		BSP; SS-SPM; SS-LRSG	4	,	ASPM; BSP; SS-SPM	4					ASPM	,
Blacknose		BSP; SS-SPM; SS-LRSG	4	,	BSP; SS-SPM	ı						,
Finetooth		BSP; SS-SPM; SS-LRSG	4		BSP; SS-SPM	ı						,
Blacktip (GOM)				ASPM; BSP; SS-SPM	<i>A</i>							,
Blacktip (ATL)				ASPM; BSP; SS-SPM						_		,
Dusky				ASPM; CFASM; BSP; SS-SPM; ASM				CF.	ASM			
Blue			BSP; ASPM	<u> </u>		BSP; CF-ASPM; ASM					_	
Shortfin mako					<u></u>	BSP; CF-ASPM; ASM		_		BSP; CF-ASPM	A	1
Porbeagle						BS/	SP; CF-ASPM; ASPM	A.			_	
20 pelagic stocks										ERA		
Scalloped hammerhead							7	SPM		_		
Blacknose (GOM)							T T	AS'	SPM			ļ
Blacknose (ATL)							T T	AS'	SPM			
Smooth dogfish											7	SS3; BSP
Smoothhound complex											S	SS-SPM; BSP
BLUE =ANALYST 1	Remains	ıS		ASM	Age-Structured						_	
RED =ANALYST 2	Left		,	ASPM	Age-Structured Produ	uction			4			I
GREEN =ANALYST 3	External	lk.	'	BSP	Bayesian Surplus Pro	duction			4			
BROWN =ANALYST 4	External	lk.	,	CF-ASPM	Catch-Free Age-Struc	ctured Production						
PURPLE =ANALYST 5	Left		,	ERA	Ecological Risk Assess	sment						
DARK RED=EXTERNAL	External	lk.	,	MLE	"Maximum Likelihoo	od Estimation"						
BLACK=ANALYST 6	Left		'	SS-LRSG	State-Space Bayesiar	n Lagged Recruitment,	, Survival and Grow	th				

SS-SPM

New

State-Space Bayesian Surplus Production

Stock Synthesis 3

History of HMS Shark Stock Assessments: Atlantic sharpnose shark case example

Assmt. Year	Name	Туре	Stocks	Duration (mo.)	Peer reviews	SAPA
1998	SEW 1998	SEW	LCS complex, Sandbar, Blacktip	9	3 CIE + 4 NRC	0.6
2002	SEW 2002	SEW	LCS complex, Sandbar, Blacktip	6	3 CIE	1.0
2002		In-house	SCS complex, Atlantic sharpnose, Bonnethead, Blacknose, Finetooth	10	1 SEFSC	5.0
2004	ICCAT	SCRS	Blue	2	1 independent	0.5
2006	SEDAR 11	Benchmark*	LCS, Sandbar, Blacktip (GOM), Blacktip (ATL)	12	3 CIE + 2 independent	1.0
2006		In-house	Dusky	12	2 NEFSC	0.3
2007	SEDAR 13	Benchmark*	SCS complex, Atlantic sharpnose, Bonnethead, Blacknose, Finetooth	10	3 CIE	1.7
2008	ICCAT	SCRS	Blue, Shortfin mako	2		1.0
2009	ICCAT-ICES	SCRS	Porbeagle	2		1.5
2010		External	Scalloped hammerhead		1 SEFSC	1.0
2011	SEDAR 21	Benchmark	Sandbar, Dusky, Blacknose (GOM)	20	5 CIE	1.0
2012	SEDAR 29	Standard	Blacktip (GOM)	9	2 CIE	1.0
2012	ICCAT	SCRS	Shortfin mako, 20 pelagic stocks	4		1.0
2013	SEDAR 34	Standard	Atlantic sharpnose, Bonnethead	13	3 CIE	1.0
2014	SEDAR 39	Benchmark	Smooth dogfish, Smoothhound complex	16**	3 CIE	0.7
Mean (SEDARs)				12.8	3.5	1.1
Mean (pre-SEDAR)				8.3	3.7	2.2
Mean (ICCAT)				2.5	0.25	1.0
Overall mean				8.5	3.3	1.2

^{*} SEDAR-like process

SAPA=Stocks Assessed per Analyst

^{**} Ongoing

Data availability for Atlantic sharpnose shark by year and type

Stock Assessment Models Used for Atlantic sharpnose sharks

- Models used have evolved according to data availability
- Initially different types of production models (that considered observation error only or process and observation error models)
- Followed by delay difference model with some additional data requirements
- Most stocks assessed, including this one, more recently with age-structured production model

Evolution of Stock Assessment Models Used for Atlantic sharpnose sharks

Surplus Production Models

Delay-difference Models

Age-structured Production Models

- Aggregated catch
- Abundance indices
- Aggregated catch
- Abundance indices
- Some biological data (survival, growth)
- Stock-recruit relation

- Catch by gear type
- Abundance indices
- Gear selectivity parameters
- Biological parameters:
 - Natural mortality at age
 - Maximum age
 - Age at maturity
 - Sex ratio at birth
 - Number of pups at age
 - Proportion of reproductively active females at age
 - Length-weight relationships
 - Growth function parameters

Complexity
Data requirements
Estimable parameters

Key Data Limitations (applicable to most species)

- Improve quality of catch estimates in general (particularly bycatch estimates and recreational catches)
- Limited length compositions and lack of age compositions
- Biology:
 - > Improve/develop age and growth model estimates, more validation needed
 - > Improve knowledge on breeding frequency

Key Data/Modeling Limitations

 Multiple indices of abundance generally available, but often with conflicting signals that create tensions in model

Some solutions: Hierarchical abundance index (Conn 2010)

- One single combined index of relative abundance is estimated
- Assumes that each index is attempting to estimate relative abundance, but is subject to both sampling and process error
- Sampling error assumed to be captured by previous standardization of indices (via CVs)
- Each index also subject to process variation, which describes the degree to which a given index measures "artifacts" above and beyond relative abundance in the population

Key Data/Modeling Limitations

 Selectivities generally estimated externally to the model after conversion of lengths into ages through growth curve or an age-length key

Characterization of Uncertainty

- Uncertainty in Data inputs (through Sensitivity Analysis)
 - Catches
 - Biological parameters
 - Indices of abundance
- Observation error in indices of abundance
- Process error in stock-recruit relationship
- Model uncertainty
 - Model complexity
 - Model structure
- Estimation uncertainty
 - 。 Algorithm; Likelihood profiling
 - Buffer between ABC and OFL
- Implementation uncertainty
 - ACL, ACT set by managers

Management Actions (General)

- HMS has no SSC
- For upper-tier stocks (data-moderate in the case of sharks), have developed a P*-like projection approach to provide a buffer between ABC and OFL in situations where the stock is not overfished
- If stock is overfished, then rebuilding rules apply
- No formal Harvest Control Rules for lower-tier stocks have been developed. Average catch over past few years is used; other species are Prohibited

Documentation (working papers, reports, and presentations generated during a typical SEDAR cycle)

- Data Workshop documents (PCL stock assessment analysts (SAA), other PCL shark staff, Miami Lab staff, MS Labs shark staff, and NEFSC shark staff): 41+4 docs / 45+25 docs
- Data Workshop report (PCL SAAs)
- Stock Assessment Process documents (PCL SAAs; 6 docs)
- Stock Assessment Report (PCL SAAs; 298 pp / 459 pp)
- Post-review update and revisions document (PCL SAAs; 42 pp / 18 pp)
- Webinar presentations (5 webinars for Atlantic sharpnose shark [standard assessment; SEDAR 34]; but 21 webinars for HMS sandbar shark [benchmark assessment; SEDAR 21)
- Assessment summary document (benchmark assessments, 17 pp; PCL SAAs;)
- Presentations for AP meetings or other (PCL SAAs)

Summary: challenges

- Process:
 - Too long and cumbersome, results in low assessment throughput/effort
 - Analyst time for research, keeping up with field, and creativity is extremely limited: high burnout rate
 - HMS lacks an SSC
- <u>Data limitations</u>: uncertain catch, lack of age compositions

Summary: positives

- Process:
 - Open process
 - Products highly scrutinized
- · Modeling:
 - Could apply data-poor/data-moderate methods to more species, but need more streamlined process

